
OOPS using C++

Object Oriented Object Oriented Object Oriented Object Oriented
Programming using C++Programming using C++Programming using C++Programming using C++

PROF. SONAL CHAWLA 1

OOPS using C++

STATEMENTSSTATEMENTSSTATEMENTSSTATEMENTS

PROF. SONAL CHAWLA 2

OOPS using C++

What is a statement ?What is a statement ?What is a statement ?What is a statement ?

A statement is a unit of a program that performs an action. It
represents a command or instruction that can be executed to
achieve a specific result.

PROF. SONAL CHAWLA 3

OOPS using C++

Selection statements Selection statements Selection statements Selection statements
 IF STATEMENT

 ITERATION STATEMENTS

PROF. SONAL CHAWLA 4

OOPS using C++

If statementIf statementIf statementIf statement
General form of an If statement:

if (expression) {

// Statements to execute if the expression is true

} else {

// Statements to execute if the expression is false

}

If the expression evaluates to true, the statement or block
associated with the `if` is executed. Otherwise, the statement or
block associated with the `else` is executed.

PROF. SONAL CHAWLA 5

OOPS using C++

Example :
#include <iostream>

using namespace std;

int main() {

int a = 10, b = 15;

if (a > b) {

cout << "A is greater";

} else {

cout << "B is greater";

}

return 0;

}

PROF. SONAL CHAWLA 6

OOPS using C++

Nested ifNested ifNested ifNested if
Here's a general form for a nested `if` statement:

if (expression1) {

if (expression2) {

// Statement executed if expression1 and expression2 are true

} else {

// Statement executed if expression1 is true and expression2 is false

}

} else {

// Statement executed if expression1 is false

}

PROF. SONAL CHAWLA 7

OOPS using C++

In this structure:

- If `expression1` is true, the inner `if` is evaluated.

- If `expression2` is also true, the corresponding statement inside
the inner `if` block is executed.

- If `expression2` is false, the statement inside the `else` block of the
inner `if` is executed.

- If `expression1` is false, the statement in the `else` block of the
outer `if` is executed.

PROF. SONAL CHAWLA 8

OOPS using C++

Example :
#include <iostream>

using namespace std;

int main() {

int a = 10, b = 15, c = 20;

if (a > b) {

if (a > c) {

cout << "A is largest";

} else {

cout << "C is largest";

}

} else {

if (b > c) {

cout << "B is largest";

} else {

cout << "C is largest";

}

}

return 0;

}

PROF. SONAL CHAWLA 9

OOPS using C++

Else if ladderElse if ladderElse if ladderElse if ladder
In an if-else ladder, conditions are evaluated sequentially from top to bottom. As soon as a true
condition is encountered, the corresponding statement is executed, and the remaining
conditions are bypassed.

if (expression1) {

statement1;

} else if (expression2) {

statement2;

} else if (expression3) {

statement3;

} else {

statement;

}

PROF. SONAL CHAWLA 10

OOPS using C++

Example:
#include <iostream>

using namespace std;

int main() {

int score = 85;

if (score >= 90) {

cout << "Grade: A";

} else if (score >= 80) {

cout << "Grade: B";

} else if (score >= 70) {

cout << "Grade: C";

} else {

cout << "Grade: D";

}

return 0;

}

PROF. SONAL CHAWLA 11

OOPS using C++

? Operator(Ternary)? Operator(Ternary)? Operator(Ternary)? Operator(Ternary)
The ternary `?` operator in C++ provides a concise way to replace simple `if-else`
statements. It evaluates a condition and returns one of two values based on the result.

condition ? statement1 : statement2;

Example:

#include <iostream>

using namespace std;

int main() {

int x = 10;

// Using ternary operator to determine if x is positive or not

string result = (x > 0) ? "x is positive" : "x is not positive";

cout << result << endl;

return 0;

}

PROF. SONAL CHAWLA 12

OOPS using C++

Switch statementSwitch statementSwitch statementSwitch statement
The `switch` statement in C++ is used for multi-way branching based on the
value of an expression. It simplifies the process of selecting among many
possible execution paths.

switch(expression) {

case constant1:

statement1;

break;

case constant2:

statement2;

break;

// Add more cases as needed

default:

defaultStatement;

}

PROF. SONAL CHAWLA 13

OOPS using C++

Example:

#include <iostream>

using namespace std;

int main() {

int day = 3;

switch(day) {

case 1:

cout << "Monday" << endl;

break;

case 2:

cout << "Tuesday" << endl;

break;

case 3:

cout << "Wednesday" << endl;

break;

case 4:

cout << "Thursday" << endl;

break;

case 5:

cout << "Friday" << endl;

break;

case 6:

cout << "Saturday" << endl;

break;

case 7:

cout << "Sunday" << endl;

break;

default:

cout << "Invalid day" << endl;

}

return 0;

}

PROF. SONAL CHAWLA 14

OOPS using C++

Iteration statementsIteration statementsIteration statementsIteration statements

In C++, iteration statements (also known as loops) allow a set of
instructions to be executed repeatedly based on a condition. They
are useful for performing repetitive tasks efficiently. There are three
primary types of iteration statements in C++:

PROF. SONAL CHAWLA 15

OOPS using C++

For loopFor loopFor loopFor loop
The `for` loop in C++ is used to execute a block of code repeatedly based on a specified condition. It is
especially useful when you know in advance how many times you want the loop to run.

for(initialization; condition; increment/decrement) {

- Initialization: This is an assignment statement that sets the initial value of the loop control variable.

- Condition: A relational expression that determines if the loop should continue or exit. The loop runs as
long as this condition is true.

- Increment/Decrement: Defines how the loop control variable changes after each iteration of the loop.

Infinite Loop:

You can create an infinite loop using the `for` loop with no condition:

for(;;) {

// Statements

}

PROF. SONAL CHAWLA 16

OOPS using C++

Example:

Here’s a simple example of a `for` loop that prints numbers from 0 to 9:
#include <iostream>

using namespace std;

int main() {

for(int i = 0; i < 10; i++) {

cout << i << "\t";

}

return 0;

}

Output:

0 1 2 3 4 5 6 7 8 9

PROF. SONAL CHAWLA 17

OOPS using C++

While loopWhile loopWhile loopWhile loop
The `while` loop in C++ allows you to execute a block of code repeatedly based
on a condition. It is used when the number of iterations is not known
beforehand and depends on some condition evaluated at runtime.

while(condition) {

// Statement(s)

}

- Condition: An expression that is evaluated before each iteration. If the
condition is true, the loop continues; if false, the loop terminates.

PROF. SONAL CHAWLA 18

OOPS using C++

Example:

Here’s an example of a `while` loop that prints numbers from 0 to 9:
#include <iostream>

using namespace std;

int main() {

int i = 0;

while (i < 10) {

cout << i << "\t";

i++;

}

return 0;

}

Output:

0 1 2 3 4 5 6 7 8 9

PROF. SONAL CHAWLA 19

OOPS using C++

Do whileDo whileDo whileDo while
The `do-while` loop is an exit-controlled loop in C++, meaning that the
condition is tested after the loop body is executed. This guarantees that
the loop body will be executed at least once.

do {

// Statement(s)

} while (condition);

- Statements: The block of code that will be executed.

- Condition: An expression evaluated after the loop body is executed. If
the condition is true, the loop continues; if false, the loop terminates.

PROF. SONAL CHAWLA 20

OOPS using C++

Example:

Here’s an example of a `do-while` loop that prints numbers from 25 to 20:
#include <iostream>

using namespace std;

int main() {

int a = 25;

do {

cout << a << "\t";

a--;

} while (a > 20); // Continue the loop while 'a' is greater than 20

return 0;

}

Output:

25 24 23 22 21 20

PROF. SONAL CHAWLA 21

OOPS using C++

Jump StatementsJump StatementsJump StatementsJump Statements

C++ provides several statements for performing unconditional
branching within a program. These statements allow you to alter the
flow of control in various ways.

PROF. SONAL CHAWLA 22

OOPS using C++

returnreturnreturnreturn
• Purpose: Exits from the current function and optionally returns a
value.

• Usage: Can be used anywhere within a function.

• Example:

int add(int a, int b) {

return a + b; // Exits the function and returns the result

}

PROF. SONAL CHAWLA 23

OOPS using C++

gotogotogotogoto
• Purpose: Jumps to a labeled statement within the same function.

• Usage: Can be used anywhere in the function but should be used cautiously as
it can make code harder to follow.

• Example:
#include <iostream>

using namespace std;

int main() {

int a = 5;

if (a == 5) goto label;

cout << 'This will be skipped' << endl;

label:

cout << 'Jumped to label' << endl;

return 0;

}

PROF. SONAL CHAWLA 24

OOPS using C++

breakbreakbreakbreak
• Purpose: Exits from the nearest enclosing loop or switch statement.

• Usage: Commonly used within loops and switch statements to terminate
execution prematurely.

• Example:
#include <iostream>
using namespace std;
int main() {

for (int i = 0; i < 10; i++) {
if (i == 5) break; // Exits the loop when i is 5
cout << i << ' ';

}
return 0;

}

PROF. SONAL CHAWLA 25

OOPS using C++

continuecontinuecontinuecontinue
• Purpose: Skips the remaining statements in the current iteration of a loop and
proceeds to the next iteration.

• Usage: Used within loops to bypass certain parts of the loop body based on a
condition.

• Example:
#include <iostream>

using namespace std;

int main() {

for (int i = 0; i < 10; i++) {

if (i % 2 == 0) continue; // Skips even numbers

cout << i << ' ';

}

return 0;

}

PROF. SONAL CHAWLA 26

OOPS using C++

The exit() functionThe exit() functionThe exit() functionThe exit() function
Breaking Out of a Program

- Function: `exit()`

- Purpose: Causes immediate termination of the entire program, returning
control to the operating system.

- General Form: `void exit(int return_code);`

- The `return_code` value is returned to the calling process, typically the
operating system.

- Usage: Can be used to exit from anywhere in the program.

PROF. SONAL CHAWLA 27

