
OOPS using C++

Object Oriented Object Oriented Object Oriented Object Oriented 
Programming using C++Programming using C++Programming using C++Programming using C++

PROF. SONAL CHAWLA 1



OOPS using C++

RecursionRecursionRecursionRecursion

PROF. SONAL CHAWLA 2



OOPS using C++

Recursion in FunctionsRecursion in FunctionsRecursion in FunctionsRecursion in Functions
A function is said to be recursive if it calls itself within its own body. Recursion is a powerful technique that allows a function to
solve problems by breaking them down into smaller, more manageable instances of the same problem.

1. Definition of Recursion:

- Recursive Function: A function that makes one or more calls to itself in its definition.

- Circular Definition: Recursion involves defining something in terms of itself, which can be thought of as a circular definition.

2. Example of Recursion:

int fact(int n) {

int ans;

if (n == 1) // Base case

return 1;

ans = fact(n - 1) * n; // Recursive call

return ans;

}

PROF. SONAL CHAWLA 3



OOPS using C++

3. Function Execution and Stack:

- When a recursive function is called, a new set of local variables and parameters are 
allocated on the call stack for each call.

- Each call to the function operates with its own set of variables, and when the 
function completes, those local variables are removed from the stack.

- Execution resumes at the point of the function call in the previous call, using the 
results of the recursive call.

4. Memory and Execution:

- Stack Allocation: Each recursive call allocates new space on the stack. This stack 
space holds local variables and parameters specific to that call.

- Stack Unwinding: When a recursive call completes, its stack space is freed, and 
execution continues from the point where it was called.

PROF. SONAL CHAWLA 4



OOPS using C++

Recursive Function CharacteristicsRecursive Function CharacteristicsRecursive Function CharacteristicsRecursive Function Characteristics

- Efficiency: Recursive functions can be elegant and reduce code
complexity, but they may also lead to performance issues if not
properly managed (e.g., excessive stack usage).

- Termination: It’s crucial to have a base case to avoid infinite
recursion, which can lead to a stack overflow.

PROF. SONAL CHAWLA 5



OOPS using C++

Example of Factorial CalculationExample of Factorial CalculationExample of Factorial CalculationExample of Factorial Calculation
#include <stdio.h>

int fact(int n) {

if (n == 1) // Base case

return 1;

else

return fact(n - 1) * n; // Recursive case

}

int main(void) {

int number = 5;

printf("Factorial of %d is %d\n", number, fact(number));

return 0;

}

Output:

Factorial of 5 is 120

PROF. SONAL CHAWLA 6



OOPS using C++

Inline functionsInline functionsInline functionsInline functions
Inline functions in C++ are functions defined with the `inline` keyword,
suggesting to the compiler that it should attempt to insert the function’s
code directly into the places where the function is called. This approach
can help to reduce the overhead associated with function calls, such as
jumping to the function and saving registers.

- Purpose: To minimize the overhead of function calls by integrating the
function’s code directly at each call site.

- Syntax: Prefix the function definition with the `inline` keyword.

- Advantage: Offers type safety and allows for better debugging compared
to macros, which only provide code replacement without type checking.

- Usage: Typically used for small, frequently called functions to improve
performance.

PROF. SONAL CHAWLA 7



OOPS using C++

Example:

class MyClass {

public:

inline void display() const { 

std::cout << "Display function" << std::endl; 

}

};

In this example, the `display` function is defined as `inline`, which suggests to 
the compiler to insert the function’s code at each call site, potentially improving 
execution speed.

PROF. SONAL CHAWLA 8



OOPS using C++

When to use inline functions ?When to use inline functions ?When to use inline functions ?When to use inline functions ?
Guidelines for Using Inline Functions

- General Advice: Inline functions should generally be used sparingly.
Overuse can lead to larger executable sizes and potentially more complex
debugging.

- When to Use: Consider using inline functions if a fully developed and
tested program runs too slowly, and if the function's execution time is
significant compared to the overhead of a function call.

- Ideal Use Cases: Inline functions are particularly beneficial when the
function is simple, such as those with a single return statement or a few
lines of code.

- Performance Considerations: Inline functions should be implemented
when the time saved by avoiding the function call overhead outweighs the
cost of increasing the function's code size in the compiled output.

PROF. SONAL CHAWLA 9



OOPS using C++

Example:

// Inline function for simple return

inline int square(int x) {

return x * x;

}

In this case, `square` is a good candidate for inlining because it is a small,
simple function. However, inline functions should be used judiciously,
ensuring they provide a real performance benefit without unnecessarily
inflating the size of the compiled program.

PROF. SONAL CHAWLA 10



OOPS using C++

Default function ArgumentsDefault function ArgumentsDefault function ArgumentsDefault function Arguments
- Function Declaration: In C++, you can call a function without specifying all its arguments. Default values for parameters are provided in the
function declaration.

- Compiler Behavior: The compiler uses the function prototype to determine the number of arguments and applies default values if they are not
provided during the function call.

- Syntax: Default values are set in the function declaration, similar to variable initialization.

Example:

// Function declaration with default values

float amount(float principal, int time, float rate = 9.5);

// Function definition

float amount(float principal, int time, float rate) {

return principal * time * rate;

}

// Function calls

float a1 = amount(1000.0, 5); // Uses default rate of 9.5

float a2 = amount(1000.0, 5, 10.0); // Uses specified rate of 10.0

PROF. SONAL CHAWLA 11


