Object Oriented
Programming using C++

Overview of C++

- Object-oriented programming is a programming paradigm.
- It is used to build more reliable and reusable systems.
- There are two main programming paradigms:

1. Procedure-oriented programming

2. Object-oriented programming

OOPS USing C++ PROF. SONAL CHAWLA

Structured programming

- Focuses on logic rather than data.

- Emphasizes algorithms over data.
- Programs are divided into modules.
- Uses independent functions (procedures) for discrete tasks.
- Does not support inheritance or polymorphism.
- In procedural languages like FORTRAN, PASCAL, COBOL, and C, a program is a sequence of instructions.
- Each statement directs the computer to perform a specific action.
- Procedural approach has its limitations:
Complexity: Large programs become difficult to debug and maintain.

Data undervalued: Emphasizes actions rather than data, leading to less secure data management. Global

variables can be accessed and modified by any function.
OOPS USing C++ PROF. SONAL CHAWLA 3

Object oriented programming

- To address the limitations of procedural programming, the concept of Object-Oriented Programming
(OOP) was developed.

- OOP provides a new approach to solving problems with computers.

- OOP languages enable programmers to create class hierarchies.

- Programmers can develop modular and reusable code.

- Existing modules can be modified as needed.

- The core idea of OOP is to combine both data and functions into a single unit known as an object.
- Functions within objects are referred to as member functions, which facilitate data access.

- To read a data item from an object, you call the relevant member function.

- The member function retrieves and returns the data item; direct access to the data is restricted. The
data is hidden.

- Data and its functions are encapsulated within a single entity called an object.

OOPS USing C++ PROF. SONAL CHAWLA

OOP Definition: Object-Oriented Programming (OOP) is a
technique where a computer program is designed and written
around objects.

Fundamental Features of OOP:

= Encapsulation = Extensibility

= Data Abstraction = Persistence

» Inheritance = Delegation

= Polymorphism = Genericity

= Message Passing = Multiple Inheritance

OOPS USing C++ PROF. SONAL CHAWLA

Class

. Class is a template (format).

. The C++ class mechanism allows users to define their own data types.
. For this reason, classes are called user-defined types.

. A class definition has two parts:

class head - composed of the keyword class followed by the class name
class body - enclosed by a pair of curly braces.

. A class definition must be followed either by a semicolon or a list of
declarations. For example:

class Screen {........c.uuv..n.
class Screen { } myScreen, yourScreen;

OOPS USing C++ PROF. SONAL CHAWLA

Objects

A class represents a logical abstraction. An object has a physical existence.
An object is an instance of a class. An object is a combination or collection
of data and code designed to emulate a physical or abstract entity.

Example:

class Screen {
// myScreen and yourScreen are objects of the class Screen
// Screen is the class name
// myScreen and yourScreen are instances of the Screen class

OOPS USing C++ PROF. SONAL CHAWLA

Class Name: Screen
JObjects: myScreen and yourScreen

The general form for defining a class and its objects is:

class class-name {
private:
// data and functions with private access specifier
public:
// data and functions with public access specifier
} object-list;

OOPS USing C++ PROF. SONAL CHAWLA

Example for representation of class

class Account {

private:
char name[20]; // Name of the account holder
intacc_type; // Type of account (e.g., savings, checking)
int acc_no; // Account number
float balance; // Current balance in the account
public:
// Member functions
void deposit(); // Function to deposit money into the account
void withdraw(); // Function to withdraw money from the account

void enquire(); // Function to enquire about the account balance or details

OOPS USing C++ PROF. SONAL CHAWLA

- Objects serve the following purposes:

- Understanding the Real World: They provide a practical basis for
designers by modeling real-world entities.

- Decomposition of Problems: Objects help in breaking down
problems into manageable pieces based on judgment and the nature
of the problem.

- Attributes and Behavior: Each object has attributes (data
structures representing its properties) and behavior (operations or
methods that define its actions).

OOPS USing C++ PROF. SONAL CHAWLA

Encapsulation

- It is a mechanism that associates code and data into a single unit,
supported by a class.

- Encapsulation binds together methods and data, keeping both safe
from outside interference and misuse.

- In object-oriented languages, encapsulation creates a "black box"
by combining functions and data.

- The process of wrapping data and functions into a single unit is
known as encapsulation.

OOPS USing C++ PROF. SONAL CHAWLA

Data Abstraction

- The technique of creating new data types that are well-suited to
the specific needs of an application is known as data abstraction.

- The data types created through data abstraction are called Abstract
Data Types (ADTs).

OOPS USing C++ PROF. SONAL CHAWLA

Inheritance

- It is the process by which an object of one class acquires the properties
of objects from another class.

- The class that inherits properties from another class is referred to as the
derived class (child class), while the class providing properties is known as
the base class (parent class).

- Inheritance establishes a parent-child relationship between the base
class and the derived class.

- It enables the extension and reuse of existing code without the need to
rewrite it from scratch.

- The derived class inherits the members of the base class and can also
introduce its own members.

OOPS USing C++ PROF. SONAL CHAWLA

- Example: When class B inherits from class ‘A", class B is referred
to as the derived class or subclass.

- Class "A’" is known as the base class or superclass.
- Class "B’ consists of two parts:
- Derived Part: The components inherited from the base class "A".

- Incremental Part: The new code that is added to class 'B" beyond
what is inherited from class 'A".

OOPS USing C++ PROF. SONAL CHAWLA

For example, Maruthi, sports cars and Benz are all types of cars.

® In the object oriented language, sports cars, Maruthi and Benz are subclasses of the class car.

® The class caris a "super class" (parent class or base class) of Maruthi, Benz, and sports cars.

® Every subclass will inherit data (state) and functions (properties) from the super class.

® The various types of cars such as Maruthi and Benz will share certain properties such as break, escalator,
steering etc.

® The attribute once declared in the super class which are inherited by its subclasses, need not repeated. They can
be accessed form any subclass unless they are private.

® Only the methods of a class can access its private attributes.

([

The attributes which are declared as protected are accessible to subclasses.

OOPS USing C++ PROF. SONAL CHAWLA

- Single Inheritance: Involves deriving a class from a single
base class.

- Multiple Inheritance: Involves deriving a class from more
than one base class.

OOPS USing C++ PROF. SONAL CHAWLA

Polymorphism

- Derived from "poly" meaning many and
polymorphism means "many forms."

morph" meaning forms,

- It allows a single name or operator to be associated with different
operations based on the data provided.

- Polymorphism is the ability to use an operator or function in multiple
ways, giving different meanings depending on the context.

- Essentially, polymorphism enables a single function or operator to
behave differently based on how it is used.

- The two types of polymorphism are operator overloading and function
overloading.

OOPS USing C++ PROF. SONAL CHAWLA

Function Overloading

- Example of Function Overloading: Function overloading occurs
when multiple methods in a class have the same name but differ in
their parameters, such as "Calculate(int a, float b)’, "Calculate(int a,
int b)’, and "Calculate(float a, float b)".

- In this case, the appropriate Calculate” function is executed based
on the type and number of arguments passed to it.

OOPS USing C++ PROF. SONAL CHAWLA

Message Passing

- In an object-oriented language, a message is sent to an object.

- This process involves invoking an operation on the object in
response to a message, which triggers the execution of the
corresponding method in the object.

- A message to an object is interpreted as a request to execute a
function.

- When the object receives a message, the appropriate function is
invoked, and the result is generated within the object.

OOPS USing C++ PROF. SONAL CHAWLA

- Example: ‘student.marks(rolINo)’

- In this example, ‘'marks()” is the message with ‘rolINo" as the
parameter, and ‘student’ is the object.

- The message ‘marks()’ requests the execution of the function with
‘rolINo™ as the information passed to the object.

- Objects have a lifetime during which they can be created and
destroyed. Communication between objects can occur as long as
they are alive.

OOPS USing C++ PROF. SONAL CHAWLA

- Extensibility: Allows for the extension of the functionality of
existing software components.

- Persistence: Refers to the phenomenon where an object outlives
the program execution time, existing between different runs of the
program.

- Genericity: Enables the declaration of data items without
specifying their exact datatype.

OOPS using C++ PROF. SONAL CHAWLA

Delegation

- The two most common techniques for reusing functionality in object-oriented systems are class
inheritance and object composition.

- Class Inheritance: If class ‘B’ is derived from class "A’, then "B’ is considered a specialized kind of "A".

- Object Composition: An object can be a collection of other objects, and this relationship is known as a
"has-a" relationship or containership.

- Delegation: This technique makes object composition as powerful as inheritance for reuse. It involves two
objects: a receiving object delegates operations to another object (similar to subclasses sending requests
to parent classes).

- In some cases, inheritance and containership can serve similar purposes.

- A C++ program consists of multiple objects that communicate by calling each other's member functions,
which are known as methods.

- Calling a member function of an object is referred to as sending a message to the object.

- The internal structure of an object is hidden from the user, a property known as data/information hiding
or data encapsulation.

OOPS USing C++ PROF. SONAL CHAWLA

- Both attributes (data) and methods (functions) are members of a class.
- Members are declared as either private or public:
- Public Members: Can be accessed by any function.
- Private Members: Can only be accessed by methods of the same class.
- C++ has special functions:
Constructor: Initializes new instances of a class.
Destructor: Performs necessary cleanup when an object is destroyed.
- C++ provides three types of memory allocations for objects:
Static: Pre-allocated by the compiler, typically for variables declared outside functions using the “static’ keyword.
Automatic: Allocated on the stack, used for local variables within functions.

Dynamic: Allocated from the heap based on explicit requests from the programmer.

OOPS USing C++ PROF. SONAL CHAWLA

C++

C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs
as an enhancement to the C programming language. Initially named
"C with Classes," it was renamed to "C++" in 1983.

OOPS USing C++ PROF. SONAL CHAWLA

The C++ program

- In C++, an action is referred to as an expression.

- An expression terminated by a semicolon is known as a statement.
- The smallest independent unit in a C++ program is a statement.
- Example: ‘int book_count =0;"

- This is a declaration statement. "book count is referred to as an
identifier, variable, symbolic variable, or object.

- Every C++ program must contain a function called ‘'main'.

- A C++ program begins execution with the first statement of the "main()’
function.

OOPS USing C++ PROF. SONAL CHAWLA

Functions

- A function in C++ consists of four parts:
* Return Type: Specifies the type of value the function will return.
* Function Name: The identifier used to call the function.

¢ Parameter List: A comma-separated list of parameters enclosed in parentheses,
which may include zero or more parameters.

* Function Body: The definition of the function, enclosed in curly braces,
containing a sequence of program statements.

- The first three parts (return type, function name, and parameter list) are collectively
known as the function prototype.

- The parameter list is enclosed in parentheses and may be empty or contain multiple
parameters.

- The function body is enclosed in curly braces {} and includes the executable code of
the function.

OOPS USing C++ PROF. SONAL CHAWLA

Errors

- One of the compiler's tasks is to analyze the program for correctness.

- While the compiler can identify syntax and type errors, it cannot verify
whether the meaning or logic of the program is correct.

e - Two common forms of program errors are:

* - Syntax Error: Errors in the code structure, such as missing semicolons or
mismatched parentheses, that prevent the program from being compiled.

* - Type Error: Errors involving incorrect use of data types, such as assigning a
string to an integer variable, which can lead to compilation issues.

OOPS using C++ PROF. SONAL CHAWLA

- Syntax Error:

- Occurs when the programmer makes a grammatical mistake in the C++
program. This could include issues like missing semicolons, incorrect use
of keywords, or improper syntax that prevents the program from
compiling.

- Type Error:

- In C++, each data item has a specific type (e.g., integers, strings). For
example, the value 10 is an integer, while the word "hello" " is a string. A
type error occurs if a function expects an integer argument but receives a
string instead. The compiler will signal this mismatch as a type error.

OOPS USing C++ PROF. SONAL CHAWLA

Comment

* - The main purpose of comments is to assist human readers of the program.

* - Comments help both the programmer writing the code and anyone else who
needs to read the source file or code by explaining what the code does and how
it works.

* - The compiler ignores comments, so they do not affect the execution of the
program.

* - Comments are useful for describing parts of the code and providing
additional context or explanations.

OOPS using C++ PROF. SONAL CHAWLA

In C++, there are two types of comment delimiters:

Single-Line Comments: Start with a double slash // and continue to
the end of the line.

Used for brief comments on a single line.

Example: // This is a program to add two numbers

OOPS USing C++ PROF. SONAL CHAWLA

Multi-Line Comments: Enclosed between /* and */.

The compiler treats everything between /* and */ as part of the
comment, which can span multiple lines.

Example:
/* This is a program

to add two numbers */

OOPS USing C++ PROF. SONAL CHAWLA

Input / Output

- In C++, input and output operations are managed by the standard library
known as the iostream library.

- Input from the terminal (standard input) is handled by the predefined
iostream object cin'.

- Output to the terminal (standard output) is managed by the predefined
iostream object cout'.

- To use cin’ and ‘cout’ in a program, you must include the following
statement at the beginning of your code: #include <iostream>'. Note that
in modern C++, the correct header file is <iostream>", not <iostream.h>".

OOPS USing C++ PROF. SONAL CHAWLA

- C++ uses the bit-wise left shift operator ('<<’) for output operations.

- Example: “cout << "Hello world";"

- This symbol is called the insertion or put-to operator.

- Muultiple items can be displayed using a single "cout’ object.

- Example: “cout << "age = " << age;’

- C++ uses the bit-wise right shift operator (*>>") for input operations.
- Syntax: ‘cin >> variable;
- Example: ‘cin >> age;’
- This symbol is called the extraction operator.
- Muultiple items can be read using a single ‘cin” object.

- Example: “cin >> name >> age;’

OOPS USing C++ PROF. SONAL CHAWLA

Basic structure of C++ program

Fa]
Preprocessor directives
M |
Global declaration
L |
]
Class definition
L |

main

Local declaration;
statements;

User defined functions

OOPS using C++ PROF. SONAL CHAWLA

A sample C++ program

// Program to display "Hello World"

#include <iostream> // Preprocessor directive to include the iostream library

using namespace std; // To use standard namespace

int main() { // Function declaration

cout << "Hello world, SIT, Valachil, Mangalore"; // Output statement
return 0; // End of the program

OOPS using C++

PROF. SONAL CHAWLA

Key Points:

- #include <iostream>": Includes the iostream library for input and output
operations.

- ‘using namespace std;: Allows you to use standard library names
without prefixing them with ‘std::".

- “int main()": The main function, where program execution starts.

- cout << "Hello world, SIT, Valachil, Mangalore"; : Displays the message
to the console.

- ‘return 0; : Indicates that the program has ended successfully.

OOPS USing C++ PROF. SONAL CHAWLA

- The source code of the program is written in a text editor.
- The source code is then compiled to convert it into machine code.

- C++ programs use libraries that contain the object code of standard
functions. The object code for all functions used in the program must be
combined with the programmer's code.

- Startup code is also required to produce an executable version of the
program.

- The process of combining the necessary object code and startup code to
create an executable file is called linking. This process results in the
production of executable code.

OOPS USing C++ PROF. SONAL CHAWLA

Scope resolution operator

In C++, when a local variable has the same name as a global variable, the scope resolution operator (::) is used to
access the global variable from within the function. Here’s an example illustrating this:

#include <iostream> // Preprocessor directive to include the iostream library
using namespace std; // To use standard namespace
int num = 20; // Global variable
int main() {
int num = 30; // Local variable with the same name as the global variable
cout << "Local =" << num << endl; // Outputs the local variable
cout << "Global =" << ::num << endI; // Accesses the global variable using the scope resolution operator

cout << "Sum =

ou << ::num + num << endl; // Calculates and outputs the sum of the global and local
variables

return 0; // End of the program

OOPS USing C++ PROF. SONAL CHAWLA

Output:

Local = 30
Global = 20
Sum =50

OOPS USing C++ PROF. SONAL CHAWLA

Manipulators

Manipulators in C++ are operators used to format the display of data.

Common manipulators include ‘endl” and ‘setw:

- ‘endl’:
- Indicates the end of a line, causing the next output to appear on a new line.

- Example: “cout << "Hello" << endl;’

- ‘setw:

- Specifies the field width for the data, ensuring that the data is right-justified within the given
width. If the data has fewer characters than the specified width, spaces are added to the right.

- Usage: ‘setw(n) where 'n’ is the width of the field.

OOPS USing C++ PROF. SONAL CHAWLA

- Example:
“cpp
#include <iostream>

#include <iomanip> // Required for setw
using namespace std;
int main() {

cout << setw(10) << 42 << endl; // Output: "

return O;

OOPS using C++

42" (with 8 spaces before 42)

PROF. SONAL CHAWLA

