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Overview of C++Overview of C++Overview of C++Overview of C++

- Object-oriented programming is a programming paradigm.

- It is used to build more reliable and reusable systems.

- There are two main programming paradigms:

1. Procedure-oriented programming

2. Object-oriented programming
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Structured programmingStructured programmingStructured programmingStructured programming
- Focuses on logic rather than data.

- Emphasizes algorithms over data.

- Programs are divided into modules.

- Uses independent functions (procedures) for discrete tasks.

- Does not support inheritance or polymorphism.

- In procedural languages like FORTRAN, PASCAL, COBOL, and C, a program is a sequence of instructions.

- Each statement directs the computer to perform a specific action.

- Procedural approach has its limitations:

Complexity: Large programs become difficult to debug and maintain.

Data undervalued: Emphasizes actions rather than data, leading to less secure data management. Global          
variables can be accessed and modified by any function.
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Object oriented programmingObject oriented programmingObject oriented programmingObject oriented programming
- To address the limitations of procedural programming, the concept of Object-Oriented Programming 
(OOP) was developed.

- OOP provides a new approach to solving problems with computers.

- OOP languages enable programmers to create class hierarchies.

- Programmers can develop modular and reusable code.

- Existing modules can be modified as needed.

- The core idea of OOP is to combine both data and functions into a single unit known as an object.

- Functions within objects are referred to as member functions, which facilitate data access.

- To read a data item from an object, you call the relevant member function.

- The member function retrieves and returns the data item; direct access to the data is restricted. The 
data is hidden.

- Data and its functions are encapsulated within a single entity called an object.
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OOP Definition: Object-Oriented Programming (OOP) is a 
technique where a computer program is designed and written 
around objects.

Fundamental Features of OOP:
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 Encapsulation

 Data Abstraction

 Inheritance

 Polymorphism

 Message Passing

 Extensibility

 Persistence

 Delegation

 Genericity

 Multiple Inheritance 
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ClassClassClassClass
• Class is a template (format).

• The C++ class mechanism allows users to define their own data types.

• For this reason, classes are called user-defined types.

• A class definition has two parts:
class head - composed of the keyword class followed by the class name
class body - enclosed by a pair of curly braces.

• A class definition must be followed either by a semicolon or a list of
declarations. For example:

class Screen {..................

class Screen { ..... ..... .... } myScreen, yourScreen;
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ObjectsObjectsObjectsObjects
A class represents a logical abstraction. An object has a physical existence. 
An object is an instance of a class. An object is a combination or collection 
of data and code designed to emulate a physical or abstract entity.

Example:

class Screen {

// myScreen and yourScreen are objects of the class Screen

// Screen is the class name

// myScreen and yourScreen are instances of the Screen class

}
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Class Name: Screen
Objects: myScreen and yourScreen

The general form for defining a class and its objects is:

class class-name {

private:

// data and functions with private access specifier

public:

// data and functions with public access specifier

} object-list;
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Example for representation of classExample for representation of classExample for representation of classExample for representation of class
class Account {

private:

char name[20];      // Name of the account holder

int acc_type;       // Type of account (e.g., savings, checking)

int acc_no;         // Account number

float balance;     // Current balance in the account

public:

// Member functions

void deposit();    // Function to deposit money into the account

void withdraw();   // Function to withdraw money from the account

void enquire();    // Function to enquire about the account balance or details

};
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- Objects serve the following purposes:

- Understanding the Real World: They provide a practical basis for
designers by modeling real-world entities.

- Decomposition of Problems: Objects help in breaking down
problems into manageable pieces based on judgment and the nature
of the problem.

- Attributes and Behavior: Each object has attributes (data
structures representing its properties) and behavior (operations or
methods that define its actions).
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EncapsulationEncapsulationEncapsulationEncapsulation
- It is a mechanism that associates code and data into a single unit,
supported by a class.

- Encapsulation binds together methods and data, keeping both safe
from outside interference and misuse.

- In object-oriented languages, encapsulation creates a "black box"
by combining functions and data.

- The process of wrapping data and functions into a single unit is
known as encapsulation.
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Data AbstractionData AbstractionData AbstractionData Abstraction

- The technique of creating new data types that are well-suited to
the specific needs of an application is known as data abstraction.

- The data types created through data abstraction are called Abstract
Data Types (ADTs).

PROF. SONAL CHAWLA 12



OOPS using C++

InheritanceInheritanceInheritanceInheritance
- It is the process by which an object of one class acquires the properties
of objects from another class.

- The class that inherits properties from another class is referred to as the
derived class (child class), while the class providing properties is known as
the base class (parent class).

- Inheritance establishes a parent-child relationship between the base
class and the derived class.

- It enables the extension and reuse of existing code without the need to
rewrite it from scratch.

- The derived class inherits the members of the base class and can also
introduce its own members.
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- Example: When class `B` inherits from class `A`, class `B` is referred
to as the derived class or subclass.

- Class `A` is known as the base class or superclass.

- Class `B` consists of two parts:

- Derived Part: The components inherited from the base class `A`.

- Incremental Part: The new code that is added to class `B` beyond
what is inherited from class `A`.

PROF. SONAL CHAWLA 14



OOPS using C++

• For example, Maruthi, sports cars and Benz are all types of cars.

• In the object oriented language, sports cars, Maruthi and Benz are subclasses of the class car.

• The class car is a "super class" (parent class or base class) of Maruthi, Benz, and sports cars.

• Every subclass will inherit data (state) and functions (properties) from the super class.

• The various types of cars such as Maruthi and Benz will share certain properties such as break, escalator,
steering etc.

• The attribute once declared in the super class which are inherited by its subclasses, need not repeated. They can
be accessed form any subclass unless they are private.

• Only the methods of a class can access its private attributes.

• The attributes which are declared as protected are accessible to subclasses.
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- Single Inheritance: Involves deriving a class from a single 
base class.

- Multiple Inheritance: Involves deriving a class from more 
than one base class.
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PolymorphismPolymorphismPolymorphismPolymorphism
- Derived from "poly" meaning many and "morph" meaning forms,
polymorphism means "many forms."

- It allows a single name or operator to be associated with different
operations based on the data provided.

- Polymorphism is the ability to use an operator or function in multiple
ways, giving different meanings depending on the context.

- Essentially, polymorphism enables a single function or operator to
behave differently based on how it is used.

- The two types of polymorphism are operator overloading and function
overloading.
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Function OverloadingFunction OverloadingFunction OverloadingFunction Overloading

- Example of Function Overloading: Function overloading occurs
when multiple methods in a class have the same name but differ in
their parameters, such as `Calculate(int a, float b)`, `Calculate(int a,
int b)`, and `Calculate(float a, float b)`.

- In this case, the appropriate `Calculate` function is executed based
on the type and number of arguments passed to it.

PROF. SONAL CHAWLA 18



OOPS using C++

Message PassingMessage PassingMessage PassingMessage Passing
- In an object-oriented language, a message is sent to an object.

- This process involves invoking an operation on the object in
response to a message, which triggers the execution of the
corresponding method in the object.

- A message to an object is interpreted as a request to execute a
function.

- When the object receives a message, the appropriate function is
invoked, and the result is generated within the object.
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- Example: `student.marks(rollNo)`

- In this example, `marks()` is the message with `rollNo` as the
parameter, and `student` is the object.

- The message `marks()` requests the execution of the function with
`rollNo` as the information passed to the object.

- Objects have a lifetime during which they can be created and
destroyed. Communication between objects can occur as long as
they are alive.
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- Extensibility: Allows for the extension of the functionality of

existing software components.

- Persistence: Refers to the phenomenon where an object outlives

the program execution time, existing between different runs of the

program.

- Genericity: Enables the declaration of data items without

specifying their exact datatype.
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DelegationDelegationDelegationDelegation
- The two most common techniques for reusing functionality in object-oriented systems are class
inheritance and object composition.

- Class Inheritance: If class `B` is derived from class `A`, then `B` is considered a specialized kind of `A`.

- Object Composition: An object can be a collection of other objects, and this relationship is known as a
"has-a" relationship or containership.

- Delegation: This technique makes object composition as powerful as inheritance for reuse. It involves two
objects: a receiving object delegates operations to another object (similar to subclasses sending requests
to parent classes).

- In some cases, inheritance and containership can serve similar purposes.

- A C++ program consists of multiple objects that communicate by calling each other's member functions,
which are known as methods.

- Calling a member function of an object is referred to as sending a message to the object.

- The internal structure of an object is hidden from the user, a property known as data/information hiding
or data encapsulation.
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- Both attributes (data) and methods (functions) are members of a class.

- Members are declared as either private or public:

- Public Members: Can be accessed by any function.

- Private Members: Can only be accessed by methods of the same class.

- C++ has special functions:

Constructor: Initializes new instances of a class.

Destructor: Performs necessary cleanup when an object is destroyed.

- C++ provides three types of memory allocations for objects:

Static: Pre-allocated by the compiler, typically for variables declared outside functions using the `static` keyword.

Automatic: Allocated on the stack, used for local variables within functions.

Dynamic: Allocated from the heap based on explicit requests from the programmer.
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C++C++C++C++
C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs 
as an enhancement to the C programming language. Initially named 
"C with Classes," it was renamed to "C++" in 1983.
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The C++ programThe C++ programThe C++ programThe C++ program
- In C++, an action is referred to as an expression.

- An expression terminated by a semicolon is known as a statement.

- The smallest independent unit in a C++ program is a statement.

- Example: `int book_count = 0;`

- This is a declaration statement. `book_count` is referred to as an
identifier, variable, symbolic variable, or object.

- Every C++ program must contain a function called `main`.

- A C++ program begins execution with the first statement of the `main()`
function.
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FunctionsFunctionsFunctionsFunctions
- A function in C++ consists of four parts:

• Return Type: Specifies the type of value the function will return.
• Function Name: The identifier used to call the function.
• Parameter List: A comma-separated list of parameters enclosed in parentheses,

which may include zero or more parameters.
• Function Body: The definition of the function, enclosed in curly braces,

containing a sequence of program statements.

- The first three parts (return type, function name, and parameter list) are collectively
known as the function prototype.

- The parameter list is enclosed in parentheses and may be empty or contain multiple
parameters.

- The function body is enclosed in curly braces `{}` and includes the executable code of
the function.
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ErrorsErrorsErrorsErrors
• - One of the compiler's tasks is to analyze the program for correctness.

• - While the compiler can identify syntax and type errors, it cannot verify

whether the meaning or logic of the program is correct.

• - Two common forms of program errors are:

• - Syntax Error: Errors in the code structure, such as missing semicolons or

mismatched parentheses, that prevent the program from being compiled.

• - Type Error: Errors involving incorrect use of data types, such as assigning a

string to an integer variable, which can lead to compilation issues.
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- Syntax Error:

- Occurs when the programmer makes a grammatical mistake in the C++ 
program. This could include issues like missing semicolons, incorrect use 
of keywords, or improper syntax that prevents the program from 
compiling.

- Type Error:

- In C++, each data item has a specific type (e.g., integers, strings). For 
example, the value `10` is an integer, while the word `"hello"` is a string. A 
type error occurs if a function expects an integer argument but receives a 
string instead. The compiler will signal this mismatch as a type error.
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CommentCommentCommentComment
• - The main purpose of comments is to assist human readers of the program.

• - Comments help both the programmer writing the code and anyone else who

needs to read the source file or code by explaining what the code does and how

it works.

• - The compiler ignores comments, so they do not affect the execution of the

program.

• - Comments are useful for describing parts of the code and providing

additional context or explanations.

PROF. SONAL CHAWLA 29



OOPS using C++

In C++, there are two types of comment delimiters:

Single-Line Comments: Start with a double slash // and continue to 
the end of the line.

Used for brief comments on a single line.

Example: // This is a program to add two numbers
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Multi-Line Comments: Enclosed between /* and */.

The compiler treats everything between /* and */ as part of the
comment, which can span multiple lines.

Example:

/* This is a program

to add two numbers */
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Input / OutputInput / OutputInput / OutputInput / Output
- In C++, input and output operations are managed by the standard library
known as the iostream library.

- Input from the terminal (standard input) is handled by the predefined
iostream object `cin`.

- Output to the terminal (standard output) is managed by the predefined
iostream object `cout`.

- To use `cin` and `cout` in a program, you must include the following
statement at the beginning of your code: `#include <iostream>`. Note that
in modern C++, the correct header file is `<iostream>`, not `<iostream.h>`.
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- C++ uses the bit-wise left shift operator (`<<`) for output operations.

- Example: `cout << "Hello world";`

- This symbol is called the insertion or put-to operator.

- Multiple items can be displayed using a single `cout` object.

- Example: `cout << "age = " << age;`

- C++ uses the bit-wise right shift operator (`>>`) for input operations.

- Syntax: `cin >> variable;`

- Example: `cin >> age;`

- This symbol is called the extraction operator.

- Multiple items can be read using a single `cin` object.

- Example: `cin >> name >> age;`
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Basic structure of C++ programBasic structure of C++ programBasic structure of C++ programBasic structure of C++ program

main

Local declaration;

statements;

User defined functions
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A sample C++ programA sample C++ programA sample C++ programA sample C++ program
// Program to display "Hello World"

#include <iostream>  // Preprocessor directive to include the iostream library

using namespace std;  // To use standard namespace

int main() {  // Function declaration

cout << "Hello world, SIT, Valachil, Mangalore";  // Output statement

return 0;  // End of the program

}
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Key Points:

- `#include <iostream>`: Includes the iostream library for input and output
operations.

- `using namespace std;`: Allows you to use standard library names
without prefixing them with `std::`.

- `int main()`: The main function, where program execution starts.

- `cout << "Hello world, SIT, Valachil, Mangalore";`: Displays the message
to the console.

- `return 0;`: Indicates that the program has ended successfully.
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- The source code of the program is written in a text editor.

- The source code is then compiled to convert it into machine code.

- C++ programs use libraries that contain the object code of standard
functions. The object code for all functions used in the program must be
combined with the programmer's code.

- Startup code is also required to produce an executable version of the
program.

- The process of combining the necessary object code and startup code to
create an executable file is called linking. This process results in the
production of executable code.
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Scope resolution operatorScope resolution operatorScope resolution operatorScope resolution operator
In C++, when a local variable has the same name as a global variable, the scope resolution operator (::) is used to
access the global variable from within the function. Here’s an example illustrating this:

#include <iostream> // Preprocessor directive to include the iostream library

using namespace std; // To use standard namespace

int num = 20; // Global variable

int main() {

int num = 30; // Local variable with the same name as the global variable

cout << "Local = " << num << endl; // Outputs the local variable

cout << "Global = " << ::num << endl; // Accesses the global variable using the scope resolution operator

cout << "Sum = " << ::num + num << endl; // Calculates and outputs the sum of the global and local
variables

return 0; // End of the program

}
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Output:

Local = 30

Global = 20

Sum = 50
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ManipulatorsManipulatorsManipulatorsManipulators
Manipulators in C++ are operators used to format the display of data. 

Common manipulators include `endl` and `setw`:

- `endl`:

- Indicates the end of a line, causing the next output to appear on a new line.

- Example: `cout << "Hello" << endl;`

- `setw`:

- Specifies the field width for the data, ensuring that the data is right-justified within the given 
width. If the data has fewer characters than the specified width, spaces are added to the right.

- Usage: `setw(n)` where `n` is the width of the field.
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- Example:

```cpp

#include <iostream>

#include <iomanip>  // Required for setw

using namespace std;

int main() {

cout << setw(10) << 42 << endl;  // Output: "        42" (with 8 spaces before 42)

return 0;

}

```
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