
OOPS using C++

Object Oriented Object Oriented Object Oriented Object Oriented
Programming using C++Programming using C++Programming using C++Programming using C++

PROF. SONAL CHAWLA 1

OOPS using C++

Overview of C++Overview of C++Overview of C++Overview of C++

- Object-oriented programming is a programming paradigm.

- It is used to build more reliable and reusable systems.

- There are two main programming paradigms:

1. Procedure-oriented programming

2. Object-oriented programming

PROF. SONAL CHAWLA 2

OOPS using C++

Structured programmingStructured programmingStructured programmingStructured programming
- Focuses on logic rather than data.

- Emphasizes algorithms over data.

- Programs are divided into modules.

- Uses independent functions (procedures) for discrete tasks.

- Does not support inheritance or polymorphism.

- In procedural languages like FORTRAN, PASCAL, COBOL, and C, a program is a sequence of instructions.

- Each statement directs the computer to perform a specific action.

- Procedural approach has its limitations:

Complexity: Large programs become difficult to debug and maintain.

Data undervalued: Emphasizes actions rather than data, leading to less secure data management. Global
variables can be accessed and modified by any function.

PROF. SONAL CHAWLA 3

OOPS using C++

Object oriented programmingObject oriented programmingObject oriented programmingObject oriented programming
- To address the limitations of procedural programming, the concept of Object-Oriented Programming
(OOP) was developed.

- OOP provides a new approach to solving problems with computers.

- OOP languages enable programmers to create class hierarchies.

- Programmers can develop modular and reusable code.

- Existing modules can be modified as needed.

- The core idea of OOP is to combine both data and functions into a single unit known as an object.

- Functions within objects are referred to as member functions, which facilitate data access.

- To read a data item from an object, you call the relevant member function.

- The member function retrieves and returns the data item; direct access to the data is restricted. The
data is hidden.

- Data and its functions are encapsulated within a single entity called an object.

PROF. SONAL CHAWLA 4

OOPS using C++

OOP Definition: Object-Oriented Programming (OOP) is a
technique where a computer program is designed and written
around objects.

Fundamental Features of OOP:

PROF. SONAL CHAWLA 5

 Encapsulation

 Data Abstraction

 Inheritance

 Polymorphism

 Message Passing

 Extensibility

 Persistence

 Delegation

 Genericity

 Multiple Inheritance

OOPS using C++

ClassClassClassClass
• Class is a template (format).

• The C++ class mechanism allows users to define their own data types.

• For this reason, classes are called user-defined types.

• A class definition has two parts:
class head - composed of the keyword class followed by the class name
class body - enclosed by a pair of curly braces.

• A class definition must be followed either by a semicolon or a list of
declarations. For example:

class Screen {..................

class Screen { } myScreen, yourScreen;

PROF. SONAL CHAWLA 6

OOPS using C++

ObjectsObjectsObjectsObjects
A class represents a logical abstraction. An object has a physical existence.
An object is an instance of a class. An object is a combination or collection
of data and code designed to emulate a physical or abstract entity.

Example:

class Screen {

// myScreen and yourScreen are objects of the class Screen

// Screen is the class name

// myScreen and yourScreen are instances of the Screen class

}

PROF. SONAL CHAWLA 7

OOPS using C++

Class Name: Screen
Objects: myScreen and yourScreen

The general form for defining a class and its objects is:

class class-name {

private:

// data and functions with private access specifier

public:

// data and functions with public access specifier

} object-list;

PROF. SONAL CHAWLA 8

OOPS using C++

Example for representation of classExample for representation of classExample for representation of classExample for representation of class
class Account {

private:

char name[20]; // Name of the account holder

int acc_type; // Type of account (e.g., savings, checking)

int acc_no; // Account number

float balance; // Current balance in the account

public:

// Member functions

void deposit(); // Function to deposit money into the account

void withdraw(); // Function to withdraw money from the account

void enquire(); // Function to enquire about the account balance or details

};

PROF. SONAL CHAWLA 9

OOPS using C++

- Objects serve the following purposes:

- Understanding the Real World: They provide a practical basis for
designers by modeling real-world entities.

- Decomposition of Problems: Objects help in breaking down
problems into manageable pieces based on judgment and the nature
of the problem.

- Attributes and Behavior: Each object has attributes (data
structures representing its properties) and behavior (operations or
methods that define its actions).

PROF. SONAL CHAWLA 10

OOPS using C++

EncapsulationEncapsulationEncapsulationEncapsulation
- It is a mechanism that associates code and data into a single unit,
supported by a class.

- Encapsulation binds together methods and data, keeping both safe
from outside interference and misuse.

- In object-oriented languages, encapsulation creates a "black box"
by combining functions and data.

- The process of wrapping data and functions into a single unit is
known as encapsulation.

PROF. SONAL CHAWLA 11

OOPS using C++

Data AbstractionData AbstractionData AbstractionData Abstraction

- The technique of creating new data types that are well-suited to
the specific needs of an application is known as data abstraction.

- The data types created through data abstraction are called Abstract
Data Types (ADTs).

PROF. SONAL CHAWLA 12

OOPS using C++

InheritanceInheritanceInheritanceInheritance
- It is the process by which an object of one class acquires the properties
of objects from another class.

- The class that inherits properties from another class is referred to as the
derived class (child class), while the class providing properties is known as
the base class (parent class).

- Inheritance establishes a parent-child relationship between the base
class and the derived class.

- It enables the extension and reuse of existing code without the need to
rewrite it from scratch.

- The derived class inherits the members of the base class and can also
introduce its own members.

PROF. SONAL CHAWLA 13

OOPS using C++

- Example: When class `B` inherits from class `A`, class `B` is referred
to as the derived class or subclass.

- Class `A` is known as the base class or superclass.

- Class `B` consists of two parts:

- Derived Part: The components inherited from the base class `A`.

- Incremental Part: The new code that is added to class `B` beyond
what is inherited from class `A`.

PROF. SONAL CHAWLA 14

OOPS using C++

• For example, Maruthi, sports cars and Benz are all types of cars.

• In the object oriented language, sports cars, Maruthi and Benz are subclasses of the class car.

• The class car is a "super class" (parent class or base class) of Maruthi, Benz, and sports cars.

• Every subclass will inherit data (state) and functions (properties) from the super class.

• The various types of cars such as Maruthi and Benz will share certain properties such as break, escalator,
steering etc.

• The attribute once declared in the super class which are inherited by its subclasses, need not repeated. They can
be accessed form any subclass unless they are private.

• Only the methods of a class can access its private attributes.

• The attributes which are declared as protected are accessible to subclasses.

PROF. SONAL CHAWLA 15

OOPS using C++

- Single Inheritance: Involves deriving a class from a single
base class.

- Multiple Inheritance: Involves deriving a class from more
than one base class.

PROF. SONAL CHAWLA 16

OOPS using C++

PolymorphismPolymorphismPolymorphismPolymorphism
- Derived from "poly" meaning many and "morph" meaning forms,
polymorphism means "many forms."

- It allows a single name or operator to be associated with different
operations based on the data provided.

- Polymorphism is the ability to use an operator or function in multiple
ways, giving different meanings depending on the context.

- Essentially, polymorphism enables a single function or operator to
behave differently based on how it is used.

- The two types of polymorphism are operator overloading and function
overloading.

PROF. SONAL CHAWLA 17

OOPS using C++

Function OverloadingFunction OverloadingFunction OverloadingFunction Overloading

- Example of Function Overloading: Function overloading occurs
when multiple methods in a class have the same name but differ in
their parameters, such as `Calculate(int a, float b)`, `Calculate(int a,
int b)`, and `Calculate(float a, float b)`.

- In this case, the appropriate `Calculate` function is executed based
on the type and number of arguments passed to it.

PROF. SONAL CHAWLA 18

OOPS using C++

Message PassingMessage PassingMessage PassingMessage Passing
- In an object-oriented language, a message is sent to an object.

- This process involves invoking an operation on the object in
response to a message, which triggers the execution of the
corresponding method in the object.

- A message to an object is interpreted as a request to execute a
function.

- When the object receives a message, the appropriate function is
invoked, and the result is generated within the object.

PROF. SONAL CHAWLA 19

OOPS using C++

- Example: `student.marks(rollNo)`

- In this example, `marks()` is the message with `rollNo` as the
parameter, and `student` is the object.

- The message `marks()` requests the execution of the function with
`rollNo` as the information passed to the object.

- Objects have a lifetime during which they can be created and
destroyed. Communication between objects can occur as long as
they are alive.

PROF. SONAL CHAWLA 20

OOPS using C++

- Extensibility: Allows for the extension of the functionality of

existing software components.

- Persistence: Refers to the phenomenon where an object outlives

the program execution time, existing between different runs of the

program.

- Genericity: Enables the declaration of data items without

specifying their exact datatype.

PROF. SONAL CHAWLA 21

OOPS using C++

DelegationDelegationDelegationDelegation
- The two most common techniques for reusing functionality in object-oriented systems are class
inheritance and object composition.

- Class Inheritance: If class `B` is derived from class `A`, then `B` is considered a specialized kind of `A`.

- Object Composition: An object can be a collection of other objects, and this relationship is known as a
"has-a" relationship or containership.

- Delegation: This technique makes object composition as powerful as inheritance for reuse. It involves two
objects: a receiving object delegates operations to another object (similar to subclasses sending requests
to parent classes).

- In some cases, inheritance and containership can serve similar purposes.

- A C++ program consists of multiple objects that communicate by calling each other's member functions,
which are known as methods.

- Calling a member function of an object is referred to as sending a message to the object.

- The internal structure of an object is hidden from the user, a property known as data/information hiding
or data encapsulation.

PROF. SONAL CHAWLA 22

OOPS using C++

- Both attributes (data) and methods (functions) are members of a class.

- Members are declared as either private or public:

- Public Members: Can be accessed by any function.

- Private Members: Can only be accessed by methods of the same class.

- C++ has special functions:

Constructor: Initializes new instances of a class.

Destructor: Performs necessary cleanup when an object is destroyed.

- C++ provides three types of memory allocations for objects:

Static: Pre-allocated by the compiler, typically for variables declared outside functions using the `static` keyword.

Automatic: Allocated on the stack, used for local variables within functions.

Dynamic: Allocated from the heap based on explicit requests from the programmer.

PROF. SONAL CHAWLA 23

OOPS using C++

C++C++C++C++
C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs
as an enhancement to the C programming language. Initially named
"C with Classes," it was renamed to "C++" in 1983.

PROF. SONAL CHAWLA 24

OOPS using C++

The C++ programThe C++ programThe C++ programThe C++ program
- In C++, an action is referred to as an expression.

- An expression terminated by a semicolon is known as a statement.

- The smallest independent unit in a C++ program is a statement.

- Example: `int book_count = 0;`

- This is a declaration statement. `book_count` is referred to as an
identifier, variable, symbolic variable, or object.

- Every C++ program must contain a function called `main`.

- A C++ program begins execution with the first statement of the `main()`
function.

PROF. SONAL CHAWLA 25

OOPS using C++

FunctionsFunctionsFunctionsFunctions
- A function in C++ consists of four parts:

• Return Type: Specifies the type of value the function will return.
• Function Name: The identifier used to call the function.
• Parameter List: A comma-separated list of parameters enclosed in parentheses,

which may include zero or more parameters.
• Function Body: The definition of the function, enclosed in curly braces,

containing a sequence of program statements.

- The first three parts (return type, function name, and parameter list) are collectively
known as the function prototype.

- The parameter list is enclosed in parentheses and may be empty or contain multiple
parameters.

- The function body is enclosed in curly braces `{}` and includes the executable code of
the function.

PROF. SONAL CHAWLA 26

OOPS using C++

ErrorsErrorsErrorsErrors
• - One of the compiler's tasks is to analyze the program for correctness.

• - While the compiler can identify syntax and type errors, it cannot verify

whether the meaning or logic of the program is correct.

• - Two common forms of program errors are:

• - Syntax Error: Errors in the code structure, such as missing semicolons or

mismatched parentheses, that prevent the program from being compiled.

• - Type Error: Errors involving incorrect use of data types, such as assigning a

string to an integer variable, which can lead to compilation issues.

PROF. SONAL CHAWLA 27

OOPS using C++

- Syntax Error:

- Occurs when the programmer makes a grammatical mistake in the C++
program. This could include issues like missing semicolons, incorrect use
of keywords, or improper syntax that prevents the program from
compiling.

- Type Error:

- In C++, each data item has a specific type (e.g., integers, strings). For
example, the value `10` is an integer, while the word `"hello"` is a string. A
type error occurs if a function expects an integer argument but receives a
string instead. The compiler will signal this mismatch as a type error.

PROF. SONAL CHAWLA 28

OOPS using C++

CommentCommentCommentComment
• - The main purpose of comments is to assist human readers of the program.

• - Comments help both the programmer writing the code and anyone else who

needs to read the source file or code by explaining what the code does and how

it works.

• - The compiler ignores comments, so they do not affect the execution of the

program.

• - Comments are useful for describing parts of the code and providing

additional context or explanations.

PROF. SONAL CHAWLA 29

OOPS using C++

In C++, there are two types of comment delimiters:

Single-Line Comments: Start with a double slash // and continue to
the end of the line.

Used for brief comments on a single line.

Example: // This is a program to add two numbers

PROF. SONAL CHAWLA 30

OOPS using C++

Multi-Line Comments: Enclosed between /* and */.

The compiler treats everything between /* and */ as part of the
comment, which can span multiple lines.

Example:

/* This is a program

to add two numbers */

PROF. SONAL CHAWLA 31

OOPS using C++

Input / OutputInput / OutputInput / OutputInput / Output
- In C++, input and output operations are managed by the standard library
known as the iostream library.

- Input from the terminal (standard input) is handled by the predefined
iostream object `cin`.

- Output to the terminal (standard output) is managed by the predefined
iostream object `cout`.

- To use `cin` and `cout` in a program, you must include the following
statement at the beginning of your code: `#include <iostream>`. Note that
in modern C++, the correct header file is `<iostream>`, not `<iostream.h>`.

PROF. SONAL CHAWLA 32

OOPS using C++

- C++ uses the bit-wise left shift operator (`<<`) for output operations.

- Example: `cout << "Hello world";`

- This symbol is called the insertion or put-to operator.

- Multiple items can be displayed using a single `cout` object.

- Example: `cout << "age = " << age;`

- C++ uses the bit-wise right shift operator (`>>`) for input operations.

- Syntax: `cin >> variable;`

- Example: `cin >> age;`

- This symbol is called the extraction operator.

- Multiple items can be read using a single `cin` object.

- Example: `cin >> name >> age;`

PROF. SONAL CHAWLA 33

OOPS using C++

Basic structure of C++ programBasic structure of C++ programBasic structure of C++ programBasic structure of C++ program

main

Local declaration;

statements;

User defined functions

PROF. SONAL CHAWLA 34

OOPS using C++

A sample C++ programA sample C++ programA sample C++ programA sample C++ program
// Program to display "Hello World"

#include <iostream> // Preprocessor directive to include the iostream library

using namespace std; // To use standard namespace

int main() { // Function declaration

cout << "Hello world, SIT, Valachil, Mangalore"; // Output statement

return 0; // End of the program

}

PROF. SONAL CHAWLA 35

OOPS using C++

Key Points:

- `#include <iostream>`: Includes the iostream library for input and output
operations.

- `using namespace std;`: Allows you to use standard library names
without prefixing them with `std::`.

- `int main()`: The main function, where program execution starts.

- `cout << "Hello world, SIT, Valachil, Mangalore";`: Displays the message
to the console.

- `return 0;`: Indicates that the program has ended successfully.

PROF. SONAL CHAWLA 36

OOPS using C++

- The source code of the program is written in a text editor.

- The source code is then compiled to convert it into machine code.

- C++ programs use libraries that contain the object code of standard
functions. The object code for all functions used in the program must be
combined with the programmer's code.

- Startup code is also required to produce an executable version of the
program.

- The process of combining the necessary object code and startup code to
create an executable file is called linking. This process results in the
production of executable code.

PROF. SONAL CHAWLA 37

OOPS using C++

Scope resolution operatorScope resolution operatorScope resolution operatorScope resolution operator
In C++, when a local variable has the same name as a global variable, the scope resolution operator (::) is used to
access the global variable from within the function. Here’s an example illustrating this:

#include <iostream> // Preprocessor directive to include the iostream library

using namespace std; // To use standard namespace

int num = 20; // Global variable

int main() {

int num = 30; // Local variable with the same name as the global variable

cout << "Local = " << num << endl; // Outputs the local variable

cout << "Global = " << ::num << endl; // Accesses the global variable using the scope resolution operator

cout << "Sum = " << ::num + num << endl; // Calculates and outputs the sum of the global and local
variables

return 0; // End of the program

}

PROF. SONAL CHAWLA 38

OOPS using C++

Output:

Local = 30

Global = 20

Sum = 50

PROF. SONAL CHAWLA 39

OOPS using C++

ManipulatorsManipulatorsManipulatorsManipulators
Manipulators in C++ are operators used to format the display of data.

Common manipulators include `endl` and `setw`:

- `endl`:

- Indicates the end of a line, causing the next output to appear on a new line.

- Example: `cout << "Hello" << endl;`

- `setw`:

- Specifies the field width for the data, ensuring that the data is right-justified within the given
width. If the data has fewer characters than the specified width, spaces are added to the right.

- Usage: `setw(n)` where `n` is the width of the field.

PROF. SONAL CHAWLA 40

OOPS using C++

- Example:

```cpp

#include <iostream>

#include <iomanip>  // Required for setw

using namespace std;

int main() {

cout << setw(10) << 42 << endl;  // Output: "        42" (with 8 spaces before 42)

return 0;

}

```

PROF. SONAL CHAWLA 41

