
OOPS using C++

Object Oriented Object Oriented Object Oriented Object Oriented
Programming using C++Programming using C++Programming using C++Programming using C++

PROF. SONAL CHAWLA 1

OOPS using C++

Operators and Operators and Operators and Operators and
ExpressionsExpressionsExpressionsExpressions

PROF. SONAL CHAWLA 2

OOPS using C++

C++ provides a rich set of built-in operators, which can be categorized into four
main classes:

1. Arithmetic Operators: Used for performing basic arithmetic operations.

- Examples: `+`, `-`, `*`, `/`, `%`

2. Relational Operators: Used for comparing values.

- Examples: `==`, `!=`, `<`, `>`, `<=`, `>=`

3. Logical Operators: Used for performing logical operations.

- Examples: `&&` (logical AND), `||` (logical OR), `!` (logical NOT)

4. Bitwise Operators: Used for performing operations on bits and bit patterns.

- Examples: `&` (bitwise AND), `|` (bitwise OR), `^` (bitwise XOR), `~` (bitwise
NOT), `<<` (left shift), `>>` (right shift)

PROF. SONAL CHAWLA 3

OOPS using C++

The Assignment OperatorThe Assignment OperatorThe Assignment OperatorThe Assignment Operator
In C++, the assignment operator (`=`) is used to assign a value to a variable. The
general form of the assignment operator is:

target = expression;

- Target (Left-hand side): This must be a variable or a pointer. It cannot be a
function or a constant.

- Expression (Right-hand side): This can be as simple as a single constant or as
complex as a full expression.

For example:
int a; // 'a' is an lvalue
a = 10; // 10 is an rvalue

In this case, `a` is an lvalue because it represents a variable that can be assigned
a value, while `10` is an rvalue because it represents a value that is assigned to
`a`.

PROF. SONAL CHAWLA 4

OOPS using C++

Type Conversion in AssignmentsType Conversion in AssignmentsType Conversion in AssignmentsType Conversion in Assignments

When variables of different types are mixed in an expression, type
conversion takes place to ensure that the operation is valid. This
process is known as type conversion or type casting.

Here’s how it works:

PROF. SONAL CHAWLA 5

OOPS using C++

Implicit Conversion (Automatic Type Conversion):

The compiler automatically converts the value of the right-hand side (expression
side) to match the type of the left-hand side (target variable). This ensures that
the types are compatible for the assignment or operation.

For example:
int a = 5;
double b = 10.5;
a = b; // Implicit conversion: double b is converted to int and

assigned to a.

Here, `b` is a `double`, but it is automatically converted to `int` before being
assigned to `a`.

PROF. SONAL CHAWLA 6

OOPS using C++

Explicit Conversion (Type Casting):

You can also manually convert between types using type casting. This
gives you control over the conversion process.

For example:
double b = 10.5;
int a = static_cast<int>(b); // Explicit conversion: double b is explicitly cast

to int.

In both cases, the value of the right side (expression side) is converted to
the type of the left side (target variable) to ensure that the operation or
assignment is carried out correctly.

PROF. SONAL CHAWLA 7

OOPS using C++

Multiple AssignmentsMultiple AssignmentsMultiple AssignmentsMultiple Assignments
In C++, you can assign the same value to multiple variables in a single statement
using chained assignments. Here’s how it works:

int x, y, z;
x = y = z = 0;

In this example, the assignment is evaluated from right to left:

1. `z = 0`: First, the value `0` is assigned to `z`.

2. `y = z`: Next, `y` is assigned the value of `z`, which is `0`.

3. `x = y`: Finally, `x` is assigned the value of `y`, which is also `0`.

As a result, all three variables (`x`, `y`, and `z`) end up with the value `0`.

PROF. SONAL CHAWLA 8

OOPS using C++

Arithmetic OperatorsArithmetic OperatorsArithmetic OperatorsArithmetic Operators
#include <iostream>

int main() {

int x = 5, y = 2;

std::cout << x / y << std::endl; // Performs integer division, displays 2

std::cout << x % y << std::endl; // Calculates the remainder of the division,
displays 1

y = 2;

std::cout << x / y << " " << x % y << std::endl; // Displays "2 1"

return 0;

}

PROF. SONAL CHAWLA 9

OOPS using C++

In this example:

- `x / y` performs integer division, which divides `x` by `y` and returns the
quotient (in this case, `5 / 2` results in `2`).

- `x % y` computes the remainder of the division (in this case, `5 % 2` results in
`1`).

So:

- `std::cout << x / y` prints `2`

- `std::cout << x % y` prints `1`

When `y` is assigned the value `2`, the output of `x / y` and `x % y` remains `2`
and `1`, respectively.

PROF. SONAL CHAWLA 10

OOPS using C++

Diff b/w prefix and postfix formsDiff b/w prefix and postfix formsDiff b/w prefix and postfix formsDiff b/w prefix and postfix forms
In C++, the increment (`++`) and decrement (`--`) operators can be used in both
prefix and postfix forms. The difference between these two forms affects when
the operation is performed relative to when the value is used in an expression.
Here's how they work:

Prefix Form (`++x` or `--x`)

- Operation: The increment or decrement is performed first, before the value is
used in the expression.

- Example:

int x = 10;

int y = ++x; // x is incremented to 11 first, then y is assigned the value 11

In this case, `x` becomes 11 before `y` is assigned, so `y` gets the value 11.

PROF. SONAL CHAWLA 11

OOPS using C++

Postfix Form (`x++` or `x--`)

- Operation: The current value of the variable is used in the expression first, and
then the increment or decrement is performed.

- Example:

int x = 10;

int y = x++; // y is assigned the value 10 first, then x is incremented to 11

Here, `y` gets the value 10 because the increment happens after `y` is assigned.
`x` becomes 11 after the assignment.

PROF. SONAL CHAWLA 12

OOPS using C++

Summary

- Prefix Example:

int x = 10;

int y = ++x; // x becomes 11, y is assigned 11

- Postfix Example:

int x = 10;

int y = x++; // y is assigned 10, x becomes 11

In both cases, `x` will end up as 11. The difference is in the value assigned to `y` and
when the increment or decrement actually occurs.

PROF. SONAL CHAWLA 13

OOPS using C++

Note on Parentheses

Parentheses can be used to alter the precedence of operations,
forcing certain operations to be evaluated before others. For
example:

int x = 5;

int y = (x++ + 3); // x++ is evaluated first, then 3 is added to the
original value of x

Here, `x++` evaluates to 5, and then 3 is added to give `y` a value of
8. After this, `x` becomes 6.

PROF. SONAL CHAWLA 14

OOPS using C++

Relational and Logical operatorsRelational and Logical operatorsRelational and Logical operatorsRelational and Logical operators
Relational Operators:

These operators compare values to determine their relationships, such as equality,
inequality, and order.

Examples include:

`==` (equal to)

`!=` (not equal to)

`>` (greater than)

`<` (less than)

`>=` (greater than or equal to)

`<=` (less than or equal to)

PROF. SONAL CHAWLA 15

OOPS using C++

Logical Operators:

These operators connect or negate relational expressions to create more complex conditions.

Examples include:

- `&&` (logical AND)

- `||` (logical OR)

- `!` (logical NOT)

Expression Results: Expressions with relational and logical operators return `0` for false and `1`
for true.

PROF. SONAL CHAWLA 16

OOPS using C++ PROF. SONAL CHAWLA 17

OOPS using C++

Precedence Precedence Precedence Precedence

PROF. SONAL CHAWLA 18

OOPS using C++

Bitwise OperatorBitwise OperatorBitwise OperatorBitwise Operator

Bitwise operations involve manipulating the individual bits of integer
data types. These operations include testing, setting, and shifting
bits in bytes or words. They are applied directly to the binary
representations of the operands.

PROF. SONAL CHAWLA 19

OOPS using C++

The bit shift operators, `>>` (right shift) and `<<` (left shift), move all bits in
a value to the right or left, respectively, by the specified number of
positions. The general form for the right shift is:

value >> number_of_bits

The general form for the left shift is:

value << number_of_bits

When bits are shifted out of one end, zeros are introduced at the other
end. Note that shifting is not a rotation; bits that are shifted out do not
wrap around to the other end. Instead, they are lost.

PROF. SONAL CHAWLA 20

OOPS using C++

The ternary operator The ternary operator The ternary operator The ternary operator
The ternary operator `?` has the following general form:

Exp1 ? Exp2 : Exp3;

Here's how it works:

- `Exp1` is evaluated first.

- If `Exp1` is true, `Exp2` is evaluated and becomes the value of the entire expression.

- If `Exp1` is false, `Exp3` is evaluated and becomes the value of the entire expression.

For example:

int x = 10;

int y = (x > 5) ? 100 : 200;

In this case, since `x > 5` is true, `y` will be assigned the value 100.

PROF. SONAL CHAWLA 21

OOPS using C++

The & and * pointer operatorsThe & and * pointer operatorsThe & and * pointer operatorsThe & and * pointer operators
A pointer is essentially the memory address of an object.

A pointer variable is specifically declared to store the address of an object of a particular type.

The `&` operator, which is a unary operator requiring only one operand, returns the memory
address of its operand.

For example, in the statement:

m = &count;

`m` is assigned the memory address of the variable `count`. This address represents the internal
location of `count` in memory and is distinct from the value stored in `count`. In this context, `&`
signifies "the address of," so the statement can be understood as "m receives the address of
count.“

In the above eg assume that the variable count is at memory location 2000. Also assume that count has the
value 100, m will have the value 2000.

PROF. SONAL CHAWLA 22

OOPS using C++

The second pointer operator is `*`, which complements the `&` operator.

The `*` operator, also a unary operator, retrieves the value of the variable
located at the address it precedes.

For example, if `m` contains the memory address of the variable `count`, the
following statement:

q = *m;

will place the value stored at the address `m` into `q`. If `count` holds the value
`100` and its address is stored in `m`, then `q` will end up with the value `100`.
Here, `*` signifies "at address," so the statement can be understood as "q
receives the value at the address stored in m."

PROF. SONAL CHAWLA 23

OOPS using C++

Here's a corrected version of the program that uses the `*` and `&` operators to assign the value `10` to a variable called `target`:

#include <stdio.h>

int main(void) {

int target, source;

int *m;

source = 10; // Assign 10 to source

m = &source; // m now holds the address of source

target = *m; // target is assigned the value at the address m (which is 10)

printf("%d", target); // Print the value of target

return 0;

}

PROF. SONAL CHAWLA 24

OOPS using C++

The dot(.) and arrow(The dot(.) and arrow(The dot(.) and arrow(The dot(.) and arrow(---->) operator>) operator>) operator>) operator
In both C and C++, the `.` (dot) and `->` (arrow) operators are used to access elements of
structures, unions, and classes.

- Class members:

- Dot Operator (`.`): Used to access a member of a class when you have a direct instance of it.

- Example: `employee.wage = 123.34;`

- Arrow Operator (`->`): Used to access a member of a class through a pointer.

- Example: `employee_ptr->wage = 123.34;`

In summary:

- Use the dot operator (`.`) when you are working with a direct object or instance.

- Use the arrow operator (`->`) when you are working with a pointer to an object or instance.

PROF. SONAL CHAWLA 25

OOPS using C++

ExpressionsExpressionsExpressionsExpressions
In programming, expressions are formed from operators, constants, and
variables. An expression is any valid combination of these elements that yields a
result.

- Operators perform operations on variables and constants.

- Constants are fixed values that do not change.

- Variables are storage locations identified by names that hold data which can be
modified during program execution.

For example, in the expression `x = 5 + 3`, `+` is an operator, `5` and `3` are
constants, and `x` is a variable.

PROF. SONAL CHAWLA 26

OOPS using C++

Type conversion in expressionsType conversion in expressionsType conversion in expressionsType conversion in expressions
When constants and variables of different types are used together in an
expression, they are converted to a common type to ensure consistent
operations. This process involves type promotion.

- Type Promotion: The compiler converts all operands to the type of the largest
operand to ensure that operations are performed accurately.

- Integral Promotion: Specifically, all `char` and `short` integer values are
automatically promoted to `int` before the expression is evaluated.

This ensures that operations are performed with the most appropriate precision
and that the results are consistent across different types.

PROF. SONAL CHAWLA 27

OOPS using C++

CastsCastsCastsCasts
You can enforce a specific data type for an expression using a cast. The general
form of a cast is:

(type) expression

Here, `type` represents the data type you want to cast to.

For example, to ensure that the division `x / 2` is treated as a floating-point
division and not integer division, you can use:

(float) x / 2

In this case, casting `x` to `float` ensures that the division operation yields a
floating-point result, preserving any fractional part. Casts are unary operators
and have the same precedence as other unary operators.

PROF. SONAL CHAWLA 28

OOPS using C++

Compound assignmentsCompound assignmentsCompound assignmentsCompound assignments
A variation of the assignment statement, known as compound
assignment, simplifies certain types of assignment operations. For
example:

Instead of writing:

x = x + 10;

You can use the compound assignment operator:

x += 10;

In this case, `+=` tells the compiler to add `10` to the current value of
`x` and then assign the result back to `x`.

PROF. SONAL CHAWLA 29

OOPS using C++

Compound assignment operators exist for all binary operators. Generally, a statement
like:

var = var operator expression;

can be rewritten using compound assignment as:

var operator= expression;

Here are some examples:

- `x -= 5` is equivalent to `x = x - 5;`

- `y *= 3` is equivalent to `y = y * 3;`

- `z /= 4` is equivalent to `z = z / 4;`

- `w %= 2` is equivalent to `w = w % 2;`

PROF. SONAL CHAWLA 30

