
OOPS using C++

Object Oriented Object Oriented Object Oriented Object Oriented
Programming using C++Programming using C++Programming using C++Programming using C++

PROF. SONAL CHAWLA 1

OOPS using C++

FUNCTION OVERLOADINGFUNCTION OVERLOADINGFUNCTION OVERLOADINGFUNCTION OVERLOADING

PROF. SONAL CHAWLA 2

OOPS using C++

- Overloading Concept: Overloading refers to using the same name for different
purposes. In C++, this applies to functions, where the same function name can be used
for multiple functions performing different tasks.

- Purpose: Function overloading is a key feature of C++ that supports compile-time
polymorphism. It enhances flexibility and convenience by allowing the use of the same
function name for various operations.

- Function Polymorphism: This allows a single function name to be associated with
different tasks. The exact function that gets called is determined by the number or type
of arguments passed.

- How It Works:

- Each overloaded function must differ either in the type of its parameters or the
number of its parameters.

- The compiler determines which version of the function to call based on the
arguments provided.

PROF. SONAL CHAWLA 3

OOPS using C++

Example of Function OverloadingExample of Function OverloadingExample of Function OverloadingExample of Function Overloading
#include <iostream>

using namespace std;

// Function to add two integers

int add(int a, int b) {

return a + b;

}

// Function to add three integers

int add(int a, int b, int c) {

return a + b + c;

}

// Function to add two doubles

double add(double a, double b) {

return a + b;

}

int main() {

cout << "Sum of 2 and 3: " << add(2, 3) <<
endl; // Calls int add(int, int)

cout << "Sum of 2, 3, and 4: " << add(2, 3, 4)
<< endl; // Calls int add(int, int, int)

cout << "Sum of 2.5 and 3.5: " << add(2.5,
3.5) << endl; // Calls double add(double,
double)

return 0;

}

PROF. SONAL CHAWLA 4

OOPS using C++

Function Overloading Restrictions in Function Overloading Restrictions in Function Overloading Restrictions in Function Overloading Restrictions in
C++C++C++C++
Cannot Overload by Return Type Alone:

Functions cannot be overloaded based solely on their return type. This
means that if two functions differ only by their return type, they cannot
be considered overloaded.

Example:

int myfun(int i);

float myfun(int i); // Error: Cannot overload based on return type alone

In this case, the two `myfun` functions appear to differ because one
returns an `int` and the other a `float`, but this difference is insufficient for
overloading.

PROF. SONAL CHAWLA 5

OOPS using C++

Pointer and Array Parameters: The compiler treats pointers and arrays as the same type
when it comes to function parameters, which can lead to errors if you attempt to
overload functions that differ only by these types.

- Example:

void f(int *p);

void f(int p[]); // Error: Cannot overload, *p is the same as p[]

Although the function prototypes `void f(int *p);` and `void f(int p[]);` appear
different, the compiler treats them as the same because `*p` is equivalent to `p[]`.

Key Points:

- Overloading requires a difference in the number or type of parameters, not just the
return type.

- Be mindful of pointer and array types, as they are considered equivalent in function
parameters.

PROF. SONAL CHAWLA 6

