
OOPS using C++

Object Oriented Object Oriented Object Oriented Object Oriented
Programming using C++Programming using C++Programming using C++Programming using C++

PROF. SONAL CHAWLA 1

OOPS using C++

Data TypesData TypesData TypesData Types

PROF. SONAL CHAWLA 2

OOPS using C++

- Data is the smallest unit of information that a computer processes.

- The data type defines the kind of data being manipulated.

- Basic data types include:

Integer: Represents whole numbers.

Floating-point: Represents numbers with decimal points.

Character: Represents individual characters.

- C++ supports both basic and derived data types.

- ANSI C++ introduced two additional data types:

`bool`: Represents boolean values (`true` or `false`).

`wchar_t`: Represents wide characters, accommodating a larger range of
characters beyond standard ASCII.

PROF. SONAL CHAWLA 3

OOPS using C++ PROF. SONAL CHAWLA 4

OOPS using C++

Primary/ Fundamental Data typePrimary/ Fundamental Data typePrimary/ Fundamental Data typePrimary/ Fundamental Data type
—There are five basic data types:

char

int

float

double

void

—ANSI C++ adds two more:

bool Boolean value

wchar t wide character

PROF. SONAL CHAWLA 5

OOPS using C++

wchar_twchar_twchar_twchar_t Type SpecifierType SpecifierType SpecifierType Specifier

- The `wchar_t` type specifier is an integral type
designed to store wide character literals.

- A wide character literal is a character literal prefixed
with the letter `L`, such as `L'x'`.

PROF. SONAL CHAWLA 6

OOPS using C++

Integer Data TypeInteger Data TypeInteger Data TypeInteger Data Type
- Integer data type represents whole numbers.

- With a 16-bit word length, the range of integer values typically
spans from -32,768 to 32,767 (i.e., from (-215) to (215 -1).

PROF. SONAL CHAWLA 7

Signed Integer Unsigned Integer

int Unsigned int

short int Unsigned short int

long int Unsigned long int

OOPS using C++

Floating Data TypeFloating Data TypeFloating Data TypeFloating Data Type
- Floating-point types occupy 4 bytes (32 bits), with the last 6 bits
used for precision.

- The decimal point uses 1 bit.

- Types of floating-point data:

- `float`: Occupies 4 bytes.

- `double`: Typically occupies 8 bytes (64 bits).

- `long double`: Often occupies 12 or 16 bytes (96 or 128 bits),
depending on the system and compiler.

PROF. SONAL CHAWLA 8

OOPS using C++

Character Data TypeCharacter Data TypeCharacter Data TypeCharacter Data Type

- Character data type may be signed or unsigned.

- It is defined as `char` and occupies one byte (8 bits).

PROF. SONAL CHAWLA 9

OOPS using C++

Bool TypeBool TypeBool TypeBool Type
- A `bool` object can be assigned the literal values `true` or `false`.

- Example: `bool found = false;`.

- `bool` cannot be declared as `signed`, `unsigned`, `short`, or `long`.
boolfound = false;

int occ count = O;

while()

{

found = look_for();

occ_count +=found;

}

PROF. SONAL CHAWLA 10

OOPS using C++

- `bool` objects and literals are implicitly promoted to `int` when an
arithmetic value is required. `false` becomes `0`, and `true` becomes
`1`.

- Arithmetic and pointer values are implicitly converted to `bool`.

- A zero or null pointer value is converted to `false`.

- All other values are converted to `true`.

PROF. SONAL CHAWLA 11

OOPS using C++

Derived Data typesDerived Data typesDerived Data typesDerived Data types

ARRAY TYPES

PROF. SONAL CHAWLA 12

OOPS using C++

- An array is a collection of variables of the same type, all accessible via a
common name.

- Example: `int a[10];` declares an array of 10 integers.

- The dimension of an array must be a constant expression. You cannot
use a non-constant variable to specify the size of an array.

- The dimension value must be known at compile time. Non-constant
values are evaluated only at runtime, so they cannot be used to define
array dimensions.

PROF. SONAL CHAWLA 13

OOPS using C++

Example:
const int size = 5;
int a[size] = {0, 1, 2};

-An array can be explicitly initialized without specifying its dimension. If the
number of elements provided is less than the specified dimension, the
remaining elements are automatically set to zero.

- A character array can be initialized in two ways:
As a list of comma-separated characters: `const char ca1[] = {'C', '+', '+'};`
As a string literal: `const char ca2[] = "C++";`

For example: `const char ch3[3] = {'a', 'b', 'c'};`

PROF. SONAL CHAWLA 14

OOPS using C++

Pointer typePointer typePointer typePointer type
- A pointer is a variable that stores the address of another variable.

- A pointer is defined by prefixing the identifier with the dereference operator
(`*`): `int *p = 0; // declares a pointer to an integer`

- A pointer can hold a value of zero, indicating it points to no object. Pointers
cannot hold non-address values.

- A `void*` pointer, also known as a generic pointer, can hold the address of any
data type but cannot be dereferenced directly.

PROF. SONAL CHAWLA 15

OOPS using C++

Example:

```cpp

void *gp; 

int *ip; 

gp = ip; // Assigns an integer pointer to a void pointer 

// *gp = 10; // Illegal, as you cannot dereference a void pointer

```

PROF. SONAL CHAWLA 16

OOPS using C++

Pointer Arithmetic:

- A number can be added to a pointer, which advances the pointer
by that number of elements of its type.

- A number can be subtracted from a pointer, which moves the
pointer back by that number of elements of its type.

- Incrementing a pointer advances it to point to the next element of
its type.

PROF. SONAL CHAWLA 17

OOPS using C++

String typeString typeString typeString type
C++ provides two main representations for strings:

1. C-style Character String:

- Represents strings as arrays of characters terminated by a null character (`'\0'`).

- Example: `char str[] = "Hello";`

2. String Class Type:

- Provides a higher-level, more flexible way to handle strings through the `std::string`
class from the Standard Library.

- Example: `std::string str = "Hello";`

PROF. SONAL CHAWLA 18

OOPS using C++

String Class type String Class type String Class type String Class type
The `std::string` class in C++ supports the following operations:

a) Initialize a String:

- Initialize a string object with a sequence of characters or with another string object.

- Example: `std::string str1("Hello"); std::string str2 = str1;`

b) Copy a String:

- Copy the content of one string to another.

- Example: `std::string str2 = str1;`

c) Compare Strings:

- Compare two strings for equality or ordering.

- Example: `bool equal = (str1 == str2);`

PROF. SONAL CHAWLA 19

OOPS using C++

d) Append Strings:

- Concatenate two strings.

- Example: `str1 += " World";`

e) Find String Length:

- Determine the length of the string.

- Example: `size_t length = str1.length();`

f) Check if a String is Empty:

- Determine if a string is empty.

- Example: `bool isEmpty = str1.empty();`

g) Define an Empty String:

- Initialize a string object with no content.

- Example: `std::string emptyStr;`

PROF. SONAL CHAWLA 20

OOPS using C++

Reference TypesReference TypesReference TypesReference Types
A reference provides an alias for an existing object. The general
syntax is:

DataType &referenceName = variableName;

For example:

float total = 100;

float &sum = total;

In this case, both `total` and `sum` refer to the same data object in
memory.

PROF. SONAL CHAWLA 21

OOPS using C++

If you output their values with:

cout << total << "\n" << sum;

Both will display `100`.

If you modify the value:

total = total + 10;

Both `total` and `sum` will now have the value `110`.

You cannot initialize a reference with the address of a variable, as in:

int &rerefval = &ival; // illegal

While a reference behaves similarly to a pointer, it cannot be initialized with an object's
address. Unlike a pointer, a reference must be initialized when declared and cannot be
reassigned to refer to another object. Essentially, a reference is treated internally as a
constant pointer.

PROF. SONAL CHAWLA 22

OOPS using C++

The primary application of reference variables is in passing arguments to functions. For example:

void fun(int &x) {

x = x + 10;

}

int main() {

int m = 10;

fun(m); // function call

return 0;

}

When the function `fun` is called, the reference variable `x` is initialized as:

int &x = m;

This means `x` is an alias for `m`. Any modifications made to `x` inside the function `fun` will directly affect the value of `m`. So,
after the function call, `m` will have the value `20`.

PROF. SONAL CHAWLA 23

OOPS using C++

UserUserUserUser----defined Data typesdefined Data typesdefined Data typesdefined Data types
 S T R U C T UR ES

 U N IO N

 C L A S S E S

 E N U M E R ATE D D ATA T Y P E

PROF. SONAL CHAWLA 24

OOPS using C++

Enumerated Data typeEnumerated Data typeEnumerated Data typeEnumerated Data type
• It is a user-defined data type.

• The syntax of enum statement is similar to that of struct

• For Ex: enum shape{ circle, square, triangle};

• The tag name becomes new type name and new variables can be declared

using these tag names.

• For Ex: shape ellipse;

• Here, ellipse is a variable of type shape.

PROF. SONAL CHAWLA 25

OOPS using C++

- In C++, an integer value cannot be automatically converted to an enum value,
but an enum value can be used in place of an integer.

- By default, enumerators are assigned integer values starting from 0, 1, and so
on.

- Enumerators can also be explicitly assigned integer values. For example:

`enum color { red, blue = 4, green }`.

- Anonymous enums are enums without tag names. For example:

`enum { off, on };

int switch = off;`.

- Enumerations are useful for defining symbolic constants in switch statements.

PROF. SONAL CHAWLA 26

OOPS using C++

LiteralsLiteralsLiteralsLiterals---- constant Qualifierconstant Qualifierconstant Qualifierconstant Qualifier
- Literals are constant values assigned symbolic names to enhance
readability and simplify the handling of standard constant values in
C++.

- C++ provides three methods for defining constants:

1. `#define` preprocessor directive

2. Enumerated data types

3. `const` keyword
For example: `const float PI = 3.1452;`

PROF. SONAL CHAWLA 27

OOPS using C++

- The statement `const float PI = 3.1452;` declares a variable `PI` and
assigns it the constant value `3.1452`.

- Without the `const` keyword, the variable `PI` could be modified, which
is not desired for constants.

- In C++, using the `const` keyword ensures that the value of `PI` cannot be
changed after its initial assignment, preventing accidental modification.

- The `const` qualifier is particularly useful for ensuring that constant
values remain unchanged throughout the program, whether or not
functions are involved.

PROF. SONAL CHAWLA 28

OOPS using C++

Tokens, expressions and control Tokens, expressions and control Tokens, expressions and control Tokens, expressions and control
structuresstructuresstructuresstructures
- Since C++ is a superset of C, most C constructs are valid in C++.

- Tokens: These are the smallest individual units in a program.

- In C++, tokens include keywords, identifiers, constants, strings, and operators.

- C++ has 48 keywords, 32 of which are inherited from C, with 15 more added by
ANSI C++.

- Identifiers: These are names assigned to variables, functions, arrays, classes,
etc., and follow the same rules as in C.

- A key difference between C and C++ is in the length of identifiers: ANSI C only
recognizes the first 32 characters of a name, while C++ has no limit on identifier
length, making all characters significant.

PROF. SONAL CHAWLA 29

OOPS using C++

- Like C, C++ supports various types of literal constants.

- Examples include:

- 123: Decimal constant

- 3.14: Floating point constant

- 075: Octal integer

- 0x1A: Hexadecimal integer

- "Hello": String constant

- 'A': Character constant

- C++ also recognizes all the backslash escape characters from C, such as `\n`, `\t`,
and `\\`.

PROF. SONAL CHAWLA 30

OOPS using C++

Character constantsCharacter constantsCharacter constantsCharacter constants
- Single character constants: These are individual characters enclosed
within single quotes.

Example: `'A'`, `'9'`, `'#'`

- String constants: These are sequences of characters enclosed
within double quotes.

Example: `"class"`, `"123"`, `"Hello, World!"`

PROF. SONAL CHAWLA 31

